

# **Environmental Product** Declaration

REINFORCING STEEL IN COILS



Based on:

PCR 2019:14

Construction products

v 1.3.4

EN:15804:2012+A2:2019

**Programme:** 

ISO 14025:2006

The International EPD System www.environdec.com

Registration N°:

EPD-IES-0018166

**CPC** code:

412

**Programme operator:** 

**EPD International AB** 

Date of issue:

2025-01-17

Valid until:

2030-01-16

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com





### General information

#### **EPD REFERENCES**

EPD OWNER: ESF ELBE-STAHLWERKE FERALPI GMBH, GRÖBAER STRASSE 3, 01591 RIESA Manufacturing plant is located in the same site

PROGRAMME OPERATOR: EPD International AB, box 21060, SE-100 31 Stockholm, Sweden; info@environdec.com

NEW EPD

#### **INDEPENDENT VERIFICATION**

This declaration has been developed referring to the International EPD System, following the General Programme Instructions v 4.0; further information and the document itself are available at: www.environdec.com. EPD document valid within the following geographical area: Germany and other countries worldwide according to sales market conditions.

ISO standard ISO 21930 and CEN standard EN 15804 served as the core PCR PCR 2019:14 Construction products, Version 1.3.4

PCR review was conducted by: The Technical Committee of the International EPD® System. See www.environdec. com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile.

The review panel may be contacted via the Secretariat www.environdec.com/contact.

Independent verification of the declaration and data, according to EN ISO 14025: 2010

Third party verifier: ICMQ SpA, via De Castillia, 10 20124 Milano (www.icmq.it)

EPD process certification (Internal)



Accredited by: Accredia n. 0004VV

Procedure for follow-up during EPD validity involves third party verifier:

YE



EPDs within the same product category but registered in different EPD programmes may not be comparable. For two EPDs to be comparable, they shall be based on the same PCR (including the same version number up to the first two digits20) or be based on fully-aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical declared/functional units); have equivalent system boundaries and descriptions of data; apply equivalent data quality requirements, methods of data collection, and allocation methods; apply identical cut-off rules and impact assessment methods (including the same version of characterisation factors); have equivalent content declarations; and be valid at the time of comparison.

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

#### **CONTACTS**

Dr. Mathias Schreiber E-mail: umwelt@de.feralpigroup.com



Technical support to Feralpi Stahl was provided by Life Cycle Engineering, Italy. (info@lcengineering.eu, www.lcengineering.eu).





# Company profile

**THE FERALPI GROUP** is one of Europe's leading manufacturers of steels for use in infrastructure and construction.

The German site of the Feralpi Group, **ESF ELBE-STAHLWERKE FERALPI GMBH** (ESF), has developed into a company with a wide range of products in the field of reinforcement steel since it was founded in 1992. Through constant modernisation of our facilities, our products guarantee a high standard of quality parameters so that we can meet the requirements of our customers. ESF is continuously monitoring developments in the reinforcement steel sector in the future and incorporate them into innovative technologies and production processes. This serves not least to strive for and fulfill the goal of continuously improving our efficiency in terms of processes and resources - and thus the environmental performance of our business activities. In addition to the production areas of steelworks, rolling mill and wire processing, there is also the plant logistics department (including the connecting railway), which is responsible for all internal and external loading processes.

The steel produced by ESF Elbe-Stahlwerke Feralpi GmbH is made exclusively from scrap with the EAF route. Utilising scrap as a raw material for steel production makes an important contribution to conserving natural resources.

The management systems implemented at the entire company site have been merged into an Integrated Management System (IMS) since 2015. The IMS includes the requirements of the standards DIN EN ISO 9001, DIN EN ISO 14001, EMAS III, and DIN EN ISO 50001 as well as the monitoring of the specialised waste management company in accordance with Sections 56 and 57 KrWG and, in addition to ESF, also includes Feralpi Stahlhandel GmbH and Feralpi-Logistik GmbH.

**Environmental protection, energy efficiency and the circular economy** determine the production processes. New technologies, environmental protection and energy efficiency measures are consistently implemented. The basis for the continuous improvement of environmental performance is a functioning environmental and energy management system that integrates all processes and stakeholders: from waste avoidance to reducing energy consumption.

For EPD purposes: ISO standard ISO 21930 compliance has been included in order to allow the selling outside Europe.

# ESF ENFORMATIVALITY TOUR P

#### **FERALPI GROUP | KEY FIGURES 2023\***



**2.4** million tons

STEEL PRODUCTION



>215
million euros

TOTAL GROSS VALUE ADDED 2023



**78.3** million euros

**EBITDA** 



>168 million euros

TECHNICAL INVESTMENTS BY THE GROUP



**1,724.2** million euros

REVENUES 2023



>1 900

EMPLOYEES (DE & ABROAD)

\*all the data refer to the entire Feralpi Group



>80%

STRATEGIC INVESTMENTS WITH ESG SHARE



Riesa

ESF Elbe-Stahlwerke Feralpi GmbH established in 1992

# Scope and Type of EPD

THE APPROACH USED IN THIS EPD IS "CRADLE-TO-GATE WITH OPTIONS" MODULES C1-C4, MODULE D AND WITH OPTIONAL MODULES (A4)

#### Table of modules

|                          | PRODUCT CONSTRUCTION PROCESS STAGE |                    |               |                       | UTILISATION STAGE |      |             |               |             |                         | END OF LIFE STAGE      |                       |                             |                    | BENEFITS AND<br>LOADS BEYOND<br>THE SYSTEM<br>BOUNDARIES |             |                                        |
|--------------------------|------------------------------------|--------------------|---------------|-----------------------|-------------------|------|-------------|---------------|-------------|-------------------------|------------------------|-----------------------|-----------------------------|--------------------|----------------------------------------------------------|-------------|----------------------------------------|
| MODULE                   | Raw material supply                | <b>V</b> Transport | Manufacturing | Transport to the site | Assembly          | es n | Maintenance | Repair Repair | Replacement | <b>89</b> Refurbishment | Operational energy use | Operational water use | Ω Deconstruction demolition | <b>C</b> Transport | Waste processing                                         | Disposal C4 | Reuse - Recovery - Recycling Potential |
| MODULE                   | AI                                 | A2                 | A3            | A4                    | A5                | BI   | B2          | В3            | В4          | B5                      | В6                     | B7                    | CI                          | C2                 | C3                                                       | C4          | D                                      |
| modules<br>declared      | ✓                                  | ✓                  | ✓             | ✓                     | MND               | MND  | MND         | MND           | MND         | MND                     | MND                    | MND                   | ✓                           | ✓                  | ✓                                                        | ✓           | ✓                                      |
| geography                | DE                                 | DE                 | DE            | EU                    | -                 | -    | -           | -             | -           | -                       | -                      | -                     | EU                          | EU                 | EU                                                       | EU          | EU                                     |
| specific<br>data used    |                                    | >90%               |               | -                     | -                 | -    | -           | -             | -           | -                       | -                      | -                     | -                           | -                  | -                                                        | -           | -                                      |
| variations -<br>products |                                    | 0%                 |               | -                     | -                 | -    | -           | -             | -           | -                       | -                      | -                     | -                           | -                  | -                                                        | -           | -                                      |
| variations -<br>sites    |                                    | 0%                 |               | -                     | -                 | -    | -           | -             | -           | -                       | -                      | -                     | -                           | -                  | -                                                        | -           | -                                      |

**SOFTWARE:** SimaPro ver. 9.6

MAIN DATABASE: Ecoinvent 3.10

REPORT LCA: life cycle assessment applied to billet, wire rod, reinforcing steel bars, reinforcing steel in coils and

electrowelded mesh

**GEOGRAPHICAL SCOPE OF THE EPD:** Europe according to sales market conditions

TYPE OF EPD: EPD of multiple products, based on the average results of the product group

# The product

**Reinforcing steel in coils** is hot-rolled and cold-formed reinforcing steel in coils by stretching. The reinforcing steel is produced at ESF Elbe-Stahlwerke Feralpi GmbH in coil form (in coils or wound on spools) and straightened, bent and cut at the processing plant (e.g. bending plant, precast concrete plant) or cut to fixed lengths (installation lengths) after straightening.

Reinforcing steel in coils can be used as an alternative to reinforcing steel bars and can be cut and bent to the desired length.

**The main materials of the final product are:** iron > 96%; alloy elements 2% c.a.; other elements complementary to 100%; for (post-consumer) recycled content see section Other optional additional environmental information.

Declared unit for the study is one tonne of cold rolled stretched coil.

SVHC Information: The product does not contain any hazardous substance according to REACH Regulation.

| INFORMATION         | DESCRIPTION                                                                                                                        |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------|
| PRODUCT DESCRIPTION | Reinforcing steel in coils can be used as an alternative to reinforcing steel bars and can be cut and bent to the required length. |
| STEEL GRADE         | Reinforcing steel in coils in ductility classes B500A and B500B                                                                    |
| RATIO RM/RE         | min. 1,05 (B500A) to min. 1,08 (B00B)                                                                                              |
| PRODUCTION ROUTE    | EAF                                                                                                                                |
| STANDARD            | DIN 488 and other international standards, e.g.: PTV 302, NF A 35-080, NEN 6008, SS212540, SIA 262, CSN 420139, MSZ/T 339          |
| DIAMETER RANGE      | 6 mm - 20 mm                                                                                                                       |
|                     | Total amount of products covered by this EPD, year 2023: 264 642 t                                                                 |
| PRODUCTIONS         | Total production, for selling purpose, year 2023: 264 642 t                                                                        |

# Environmental performance

The detailed environmental performance (in terms of use of resources, pollutant emissions and waste generation) is presented for the three phases **Upstream, Core and Downstream** and related sub-phases (A1-A2-A3-A4-C1-C2-C3-C4-D). The numbers reported in the following tables are the outcome of rounding. For this reason total results could slightly differ from the sum of contributions of the different phases. The energy sources behind the electricity grid used in manufacturing is a mix between German Supplier mix 2023 and renewable energy with Guarantees of Origin related network losses and transformation. Final emission factor is 0,22 kg CO<sub>2</sub> eq./kWh.

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

#### Environmental impacts per declared unit

|           | UNITS                 | UPSTREAM - CORE PROCESS |          |          |          |          |          |          |
|-----------|-----------------------|-------------------------|----------|----------|----------|----------|----------|----------|
|           | ONITS                 | A1:A3                   | A4       | C1       | C2       | C3       | C4       | D        |
| GWP       | kg CO <sub>2</sub> eq | 3.81E+02                | 3.58E+01 | 5.88E+01 | 1.73E+01 | 2.16E+00 | 4.07E-01 | 1.96E+02 |
| GWP,f     | kg CO <sub>2</sub> eq | 3.81E+02                | 3.58E+01 | 5.88E+01 | 1.73E+01 | 2.16E+00 | 4.07E-01 | 1.96E+02 |
| GWP,b     | kg CO <sub>2</sub> eq | 1.91E-01                | 2.04E-03 | 2.29E-03 | 5.97E-04 | 1.81E-03 | 3.02E-05 | 2.93E-02 |
| GWP,luluc | kg CO <sub>2</sub> eq | 1.69E-01                | 1.21E-03 | 2.03E-03 | 4.29E-04 | 3.51E-03 | 1.67E-05 | 2.05E-03 |
| GWP,ghg   | kg CO <sub>2</sub> eq | 3.81E+02                | 3.58E+01 | 5.88E+01 | 1.73E+01 | 2.16E+00 | 4.07E-01 | 1.96E+02 |
| ODP       | kg CFC-11 eq          | 4.99E-06                | 7.45E-07 | 9.25E-07 | 3.57E-07 | 1.45E-08 | 6.04E-09 | 3.92E-07 |
| AP        | mol H+ eq             | 1.31E+00                | 5.64E-02 | 5.49E-01 | 3.31E-02 | 1.05E-02 | 3.70E-03 | 7.11E-01 |
| EP,f      | kg P eq               | 1.37E-02                | 5.28E-05 | 5.55E-05 | 1.47E-05 | 1.04E-04 | 1.46E-06 | 8.33E-03 |
| EP,m      | kg N eq               | 3.44E-01                | 1.66E-02 | 2.58E-01 | 1.12E-02 | 2.02E-03 | 1.68E-03 | 1.39E-01 |
| EP,t      | mol N eq              | 3.84E+00                | 1.82E-01 | 2.83E+00 | 1.23E-01 | 2.23E-02 | 1.84E-02 | 1.64E+00 |
| POCP      | kg NMVOCeq            | 1.20E+00                | 1.11E-01 | 8.42E-01 | 6.16E-02 | 6.79E-03 | 5.57E-03 | 5.52E-01 |
| ADP,e*    | kg Sb eq              | 2.08E-04                | 1.21E-06 | 2.46E-06 | 5.77E-07 | 6.05E-08 | 1.61E-08 | 1.60E-03 |
| ADP,f*    | МЈ                    | 4.69E+03                | 4.84E+02 | 7.74E+02 | 2.31E+02 | 2.92E+01 | 5.23E+00 | 1.68E+03 |
| WDP*      | m³                    | 5.61E+01                | 2.09E-01 | 6.11E-01 | 9.81E-02 | 3.61E-01 | 4.74E-03 | 1.99E+01 |

GWP Global warming potential, total GWP,f Global warming potential, fossil GWP,b Global warming potential, biogenic GWP,luluc Global warming potential, land use & land use change GWP,ghg Global warming potential, excluding biogenic uptake, emission and storage

ODP Ozone depletion potential
AP Acidification potential
EP,f Eutrophication potential, freshwater
EP,m Eutrophication potential, marine
EP,t Eutrophication potential, terrestrial
POCP Photochemical ozone creation
potential
ADP,e Abiotic depletion potential minerals

& metals\*

ADP,f Abiotic depletion potential fossil fuels\*

WDP Water use deprivation potential\*

\*: The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator

# Environmental performance

>>Produce and grow with respect for the people and the environment.<<

Carlo N. Pasini | Founder of the Feralpi Group

#### Resource use per declared unit

|       |       | UPSTREAM - CORE PROCESS | DOWNSTREAM |            |          |           |           |          |  |  |  |
|-------|-------|-------------------------|------------|------------|----------|-----------|-----------|----------|--|--|--|
|       | UNITS | A1:A3                   | A4         | <b>C</b> 1 | C2       | C3        | C4        | D        |  |  |  |
| PERE  | МЈ    | 1.34E+03                | 2.25E+00   | 1.70E+00   | 8.02E-01 | 4.25E+00  | 2.30E-02  | 1.21E+02 |  |  |  |
| PERM  | МЈ    | 2.38E-03                | 0.00E+00   | 0.00E+00   | 0.00E+00 | 0.00E+00  | 0.00E+00  | 0.00E+00 |  |  |  |
| PERT  | МЈ    | 1.34E+03                | 2.25E+00   | 1.70E+00   | 8.02E-01 | 4.25E+00  | 2.30E-02  | 1.21E+02 |  |  |  |
| PENRE | МЈ    | 4.68E+03                | 4.84E+02   | 7.74E+02   | 2.31E+02 | 2.95E+01  | 5.27E+00  | 1.68E+03 |  |  |  |
| PENRM | МЈ    | 8.32E+00                | 0.00E+00   | 0.00E+00   | 0.00E+00 | -3.07E-01 | -3.42E-02 | 0.00E+00 |  |  |  |
| PENRT | МЈ    | 4.69E+03                | 4.84E+02   | 7.74E+02   | 2.31E+02 | 2.92E+01  | 5.23E+00  | 1.68E+03 |  |  |  |
| SM    | kg    | 1.10E+03                | 0.00E+00   | 0.00E+00   | 0.00E+00 | 0.00E+00  | 0.00E+00  | 0.00E+00 |  |  |  |
| RSF   | МЈ    | 0.00E+00                | 0.00E+00   | 0.00E+00   | 0.00E+00 | 0.00E+00  | 0.00E+00  | 0.00E+00 |  |  |  |
| NRSF  | МЈ    | 0.00E+00                | 0.00E+00   | 0.00E+00   | 0.00E+00 | 0.00E+00  | 0.00E+00  | 0.00E+00 |  |  |  |
| FW    | m³    | 6.73E+00                | 1.34E-02   | 2.42E-02   | 5.92E-03 | 1.52E-02  | 1.81E-04  | 5.49E-01 |  |  |  |

Additional environmental impact indicators are computed in the LCA report but not reported in the EPD.

\*The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

It is not recommended to use results of modules A1-A3 without considering also module C.

**PERE** Use of renewable primary energy excluding renewable primary energy resources used as raw materials

**PERM** Use of renewable primary energy resources used as raw materials

**PERT** Total use of renewable primary energy resources

**PENRE** Use of non-renewable primary energy excluding non-renewable

primary energy resources used as raw materials

**PENRM** Use of non-renewable primary energy resources used as raw materials

**PENRT** Total use of non-renewable primary energy resources

**SM** Use of secondary raw materials

RSF Use of renewable secondary fuels

NRSF Use of non-renewable secondary fuels

FW Use of net fresh water

# Environmental performance

#### Output flows and waste categories per declared unit

|      |       | UPSTREAM - CORE PROCESS | DOWNSTREAM |          |          |          |          |           |  |  |  |
|------|-------|-------------------------|------------|----------|----------|----------|----------|-----------|--|--|--|
|      | UNITS | A1:A3                   | A4         | C1       | C2       | C3       | C4       | D         |  |  |  |
| HWD  | kg    | 1.28E-02                | 3.19E-03   | 5.31E-03 | 1.53E-03 | 5.22E-05 | 3.46E-05 | 1.85E-02  |  |  |  |
| NHWD | kg    | 1.90E+02                | 1.84E-02   | 2.26E-02 | 7.03E-03 | 8.50E+02 | 1.50E+02 | 5.21E-01  |  |  |  |
| RWD  | kg    | 4.62E-03                | 5.64E-05   | 3.95E-05 | 2.17E-05 | 8.25E-05 | 3.20E-07 | -1.15E-03 |  |  |  |
| CRU  | kg    | 0.00E+00                | 0.00E+00   | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00  |  |  |  |
| MFR  | kg    | 1.77E+02                | 0.00E+00   | 0.00E+00 | 0.00E+00 | 8.50E+02 | 0.00E+00 | 0.00E+00  |  |  |  |
| MER  | kg    | 0.00E+00                | 0.00E+00   | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00  |  |  |  |
| EE   | МЈ    | 0.00E+00                | 0.00E+00   | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00  |  |  |  |

**HWD** Hazardous waste disposed **NHWD** Non-hazardous waste disposed

RWD Radioactive waste disposed CRU Components for re-use MFR Materials for recycling MER Materials for energy recovery

EE Exported energy

### Calculation rules

The environmental burden of the product has been calculated according to EN 15804:2012+A2:2019 and PCR 2019:14  $\vee$  1.3.4.

This declaration is a Cradle-to-Gate with options modules C1–C4, module D and with optional modules (A4) EPD type, based on the application of Life Cycle Assessment (LCA) methodology to the whole life-cycle system.

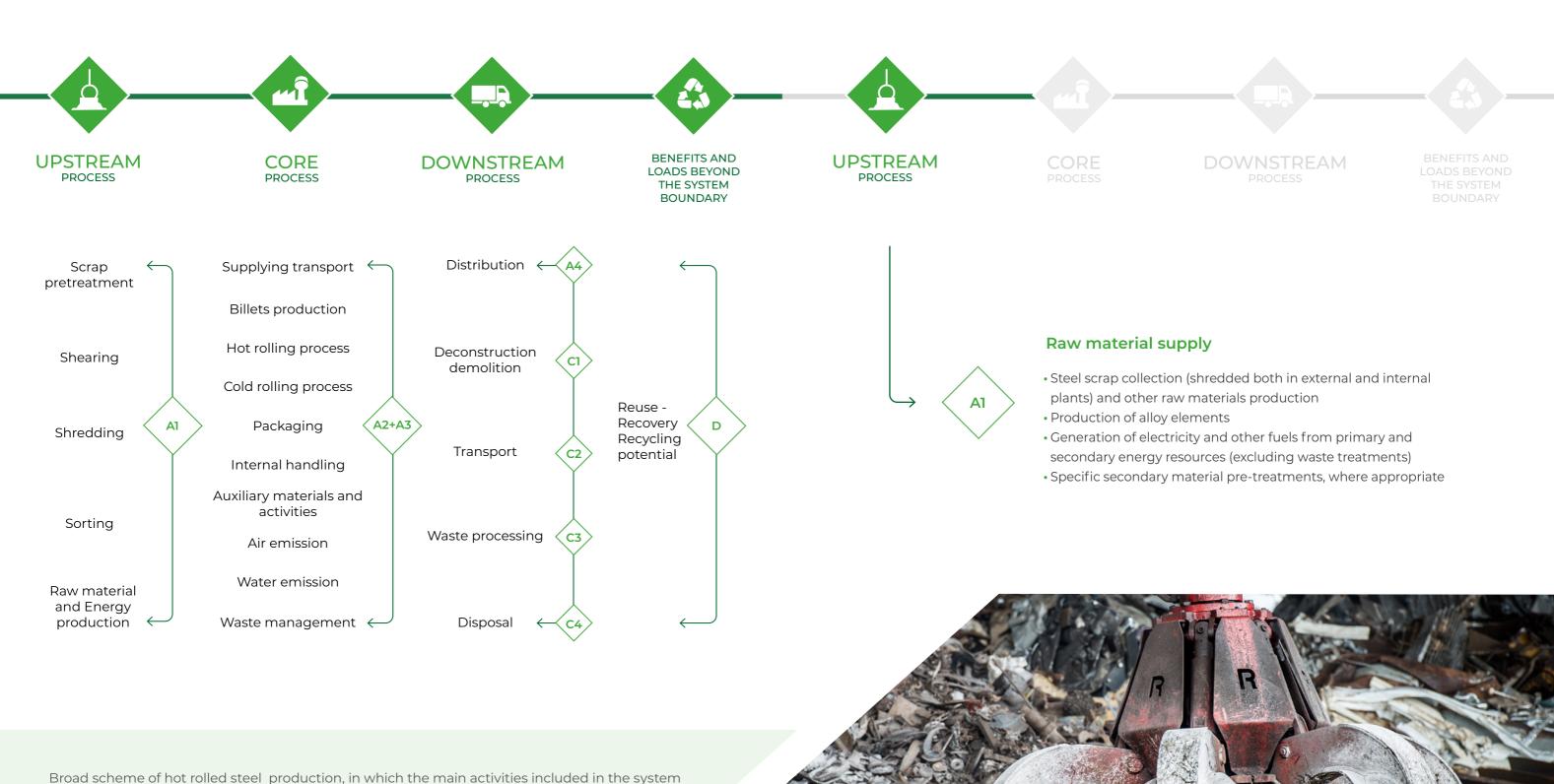
In the whole LCA model, infrastructures and production equipments are not taken into account.

**Reinforcing steel in coils** is described by using specific data from manufacturing facility (Elbe-Stahlwerke Feralpi GmbH, Gröbaer Straße 3, 01591 Riesa) for year 2023.

Customized LCA questionnaires were used to gather in-depth information about all aspects of the production system (for example, raw materials contents and specifications, pre-treatments, process efficiencies, air and water emissions, waste management), in order to provide a complete picture of the environmental burden of the system from raw materials supply (A1) to Transport (A2) and Manufacturing (A3). The use phase was not considered according to EN:15804 and PCR 2019:14 v 1.3.4, while transport to final destination (A4) and end of life (C1-C2-C3-C4-D) were considered. Therefore, in nominal installation and operating conditions, no emissions to air nor to water shall occur.

According to ISO 14040 and 14044, allocation is avoided whenever possible by dividing the system into sub-systems. When allocation cannot be avoided physical properties are used to drive flow analysis. Due to the presence of co-products in steel mill, an economic allocation were used in that phase.

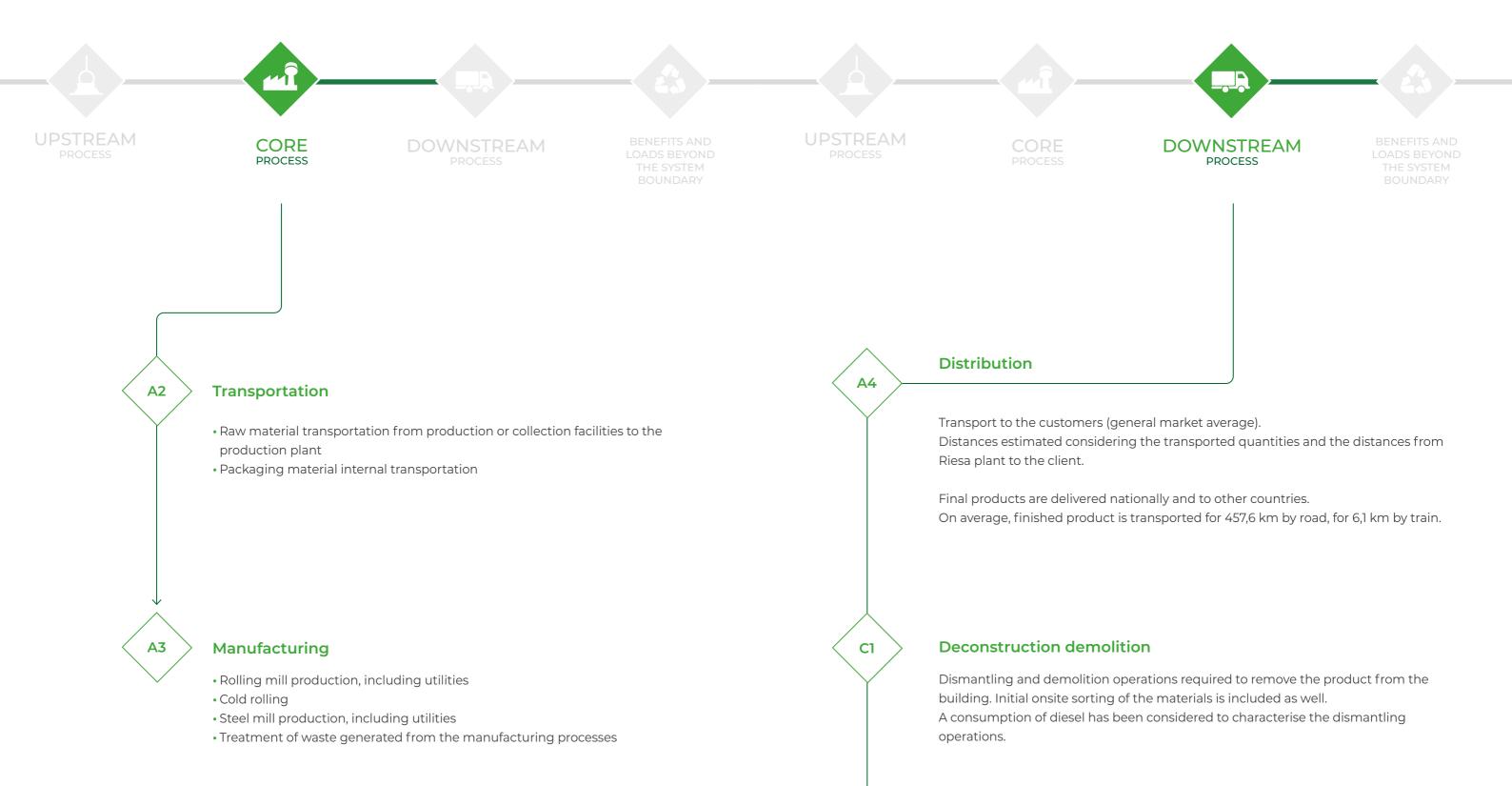
Scrap pre and post consumer has been modeled following new PCR 2019:14 v1.3.4 rules by adding environmental loads on pre-consumer with an economic allocation method.


**Data quality** has been assessed and validated during data collection process. According to EN:15804 the applied cut-off criterion for mass and energy flows is 1%.



# Scenarios and additional technical information

boundaries are listed and divided in the three subsystems: UPSTREAM Process, CORE Module


# Upstream process



and **DOWNSTREAM Process**.

# Core process

# Downstream process



14 15

### Downstream process

C2

#### Transport

Transportation of the discarded product as part of the waste processing (to recycling site or to a final disposal site), 50 km by truck for non-hazardous waste to landfill and 250 km to recycling.

The transportation by truck has been calculated considering a >32 tons range. The environmental class considered is EURO6.

( C3 )

#### Waste processing

Waste processing, including collection of waste fraction from deconstruction and waste processing of material flows intended for reuse, recycling and energy recovery.

- Recycling rate: 85% (global steel recovery rate for the construction sector extracted from World Steel 2021 data<sup>[1]</sup>)
- Consequently, the percentage of dumped steel slab is 15%
- [1] World Steel, "Fact sheet Steel and raw materials", March 2023



#### Disposal

Waste disposal including physical pre-treatment and management of the disposal site.

# Benefits and loads beyond the system boundary



#### Reuse - Recovery - Recycling potential

Environmental impacts associated to waste use after the investigated system (including recycling).

In this module impacts arising from steel recycling are accounted, including avoided impacts associated to primary steel production. The result is expressed as net value between direct impact (i.e. recycling steel in EAF furnace) and avoided impact (i.e. producing steel from iron ore in BOF furnace).

The hot-rolling impact has also been considered for both primary and secondary steel. Then calculated by multiplying the steel by the average steel mill process yield (in this case equal to 87%).

The Amount of recovered steel is equal to C3 value while recycled content equal to amount of recycled material in the product is 97,75%.

# Other optional additional environmental information

Strategic projects to improve process efficiency and environmental performance: New **resource-saving hot rolling mill** (rolling mill B) with inductive billet heating furnace, new **scrap processing** for more efficient scrap utilisation and production process, new **transformer station** in which the use of the usual sulphur hexafluoride (SF 6) can be completely dispensed, new **logistics concept** for faster and more efficient processing of logistics orders.

|                      | MINIMUM CONTENT OF RECYCLED, RECOVERED, BY-PRODUCT MATERIALS |       |                    |                   |                       |                        |          |                                                                 |  |  |  |
|----------------------|--------------------------------------------------------------|-------|--------------------|-------------------|-----------------------|------------------------|----------|-----------------------------------------------------------------|--|--|--|
| PRODUCT<br>TYPE      | PRODUCT<br>NAME                                              |       | RECYCLE<br>MATERIA | _                 | RECOVERED<br>MATERIAL | BY-PRODUCT<br>MATERIAL |          | TOTAL CONTENT OF<br>RECYCLED, RECOVERED,<br>BY-PRODUCT MATERIAL |  |  |  |
|                      |                                                              | Total | Pre-<br>consumer   | Post-<br>consumer |                       | Internal               | External |                                                                 |  |  |  |
|                      |                                                              | [%]   | [%]                | [%]               | [%]                   | [%]                    | [%]      | [%]                                                             |  |  |  |
| COLD-ROLLED<br>STEEL | Reinforcing<br>steel in coils                                | 97,75 | 7,72               | 90,03             | 0                     | 1,0                    | 0        | 98,75                                                           |  |  |  |

Recycled content verified according to ICMQ CP DOC 262 regulation, certification n. P605 rev. 2.2 and calculated according to UNI EN ISO 14021, publication date 14/06/2024, referred to 2023 year.





# References

- · EN 15804:2012+A2:2019
- · ISO 14040 and 14044:2006
- · UNI EN ISO 14021:2021
- · Life cycle assessment applied to billet, wire rod, reinforcing steel bars, reinforcing steel in coils and electrowelded mesh v2.0
- · General Programme Instructions, v4.0
- PCR 2019:14 Construction products v 1.3.4

>>Produce and grow with respect

Carlo N. Pasini | Founder of the Feralpi Group

for the people and the environment.«

·JRC EF package v3.1

